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A MONITORING SYSTEM FOR SYNOPTIC OBSERVATIONS OF
JOVIAN AND SOLAR DECAMETER-WAVE RADIO EMISSIONS

by

J. K. Alexander

ABSTRACT

This report describes a simple decameter-wave monitoring
system designed to provide synoptic observations of the sporadic
radio emission from Jupiter. The network is composed of five
stations located around the world so as to provide continuous
coverage of Jupiter with identical instruments. A pair of two-
element lobe-sweeping interferometers operating at 16.7 and
22.2 MHz comprise each station. To illustrate the performance
of the system, results of observations at the Goddard Space
Flight Center site during the 1965 apparition of Jupiter are
presented.



INTRODUCT ION

Due to the sporadic nature of the decameter-wave radio
emission from Jupiter, most studies of the properties of the
emission have required observations obtained over long periods
of time in order to be statistically adequate. The problem
is further complicated since a major portion of the observatories
studying Jupiter have been clustered near a single longitude
region on the earth. Hence, much of the data available for
study are confined to a limited number of hours every twenty-
four hours. To perform statistical studies of the emission
properties, such as correlation with the periods of Jupiter's
moons or with solar activity, continuous observations are needed.
Simultaneous observations with identical, widely spaced in-
struments are required, for example, to study the time structure
of the radio bursts and to sort ionospheric scintillations from
scintillations which may be caused by the ionosphere of Jupiter
and the interplanetary medium. This report describes a network
of simple stations which was designed with a view toward meeting
these needs.

The Jupiter Monitor Network provides continuous, homogeneous
observations of Jupiter at 16.7 and 22.2 Mz with reasonable sen-
sitivity. By operating each station 24 hours a day, the network
can also be used profitably to observe solar radio bursts at
decametric wavelengths and to study ionospheric absorption and
scintillations. The locations of the five sites which comprise
the network are listed in Table 1.

Station Longitude Latitude
Goddard Space Flight Center 76°50" W 39°01'N
Clark Lake Radio Observatory 116°17'W 33°20°W
Kauai, Hawaii 159°40'W 22°07°'N
Carnarvon, Australia 113°43'E 24°53's
Grand Canary Island, Spain 15°36'W 27°44'N

TABLE 1. STATION LOCATIONS

VZ



Except for the Clark Lake installation, all stations are located
at NASA sites and utilize established NASA technical and logistic
support facilities,

SYSTEM DESCRIPTION

Each station consists of a pair of antennas (the antennas for
16.7 and 22.2 MHz are five-element Yagis mounted on the same boom
and drive) separated by a 2000-ft. east-west baseline, As
illustrated in Figure 1, the antennas are mcunted equatorially
on 35-ft. guyed telephone poles with motorized hour angle drive
systems. Since the declination of Jupiter changes very slowly,
deciination adjustments are made manually every few months.

Antenna pointing is controlled by a simple electro-mechanical
computer. This device causes the antennas to slew east to pick
up Jupiter when it attains an hour angle of -6 hours, tracking
Jupiter for twelve hours thereafter. Then it moves the antennas
to the position of the sun and tracks the sun, providing the hour
angle of the sun is between -6 hours and +6 hours. If neither
Jupiter nor the sun is available, the antennas slew to the
meridian and remain fixed.

As shown in the block diagram in Figure 2, the radiometer
systems operate in a time-sharing mode in which they act as lobe-
sweeping radiometers for 75% of each basic 1/20 second cycle.

For the remaining time, switching circuits connect the receiver

to act as a riometer on first one antenna and then the other,.

In the riometer mode, the effective temperature of a noise generator
is controlled to be equal to the effective temperature of the
antenna at the receiver input terminals by a switch and phase
sensitive detector system. The riometer for each antenna is in
operation for 1/4 of the time. The antenna switch is transferred
from the antenna to the noise generator 1/8 of the time, leaving

3/4 of the time with both antennas connected permitting operation

in the lobe-sweeping radiometer mode.




Figure

1 - Dual-frequency, equatorially mounted, Jupiter Monitor
Network antenna.
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Figure 2 - Block diagram of Jupiter Monitor radiometer system.




In the lobe-sweeping radiometer, signals from each antenna
are individually pre-amplified and mixed with signals from in-=
dividual local oscillators at frequencies which differ by a small
amount, Af. (The difference frequency, Af, is nominaliy 1 kHz.)
The mixer outputs are then added, amplified, and squared by
square-law detection. DC, noise, and an audio-frequency com-
ponent at the difference frequency result. The amplitude of the
audio component is detected and recorded as "fringe amplitude’,
The audio component is also compared to the phase difference
between the two local oscillators in a phase sensitive detector
producing a '"cosine phase' output which is proportional to the
product of the intensity and the phase difference of the incoming
signal at the two antennas. Thus, the "fringe amplitude’ output
is a measure of the flux of incoming Jupiter or soiar radiation,
and the "cosine phase'" output varies sinusoidally as the angle of
arrival to the interferometer baseline changes due to the earth's
rotation.

Hourly calibrations of the system are provided by an automatic
calibration unit. Noise from a separate noise generator in the
calibration unit is added to the signals from each antenna through
a hybrid at the receiver input. The generator ocutput is automatically
stepped through four noise levels, and during a portion of one
step a 90° phase shift is inserted in the lobe-sweeping radio-
meter phase detector reference signal to calibrate ins*trumental
phase shift.

DATA

The three radiometer outputs at each frequency are displayed
on paper strip charts by a six-channel recorder. A data system
which converts the six analog outputs to digital information on
magnetic tape in a format convenient for computer processing is
under test at the Goddard site and is described in Appendix 1I.



Typical sections of data are illustrated in Figure 3 and 4 which
show a transit of Cassiopeia A and Jupiter, respectively. From
the Cassiopeia record, assuming the flux density from Cassiopeia
to be 4.5x10"22 w/M%/Hz at 20 MHz (Bazelian et al, 1963) and
correcting for the fact that the antennas were directed 40° south
of the source, one can estimate the system sensitivity to be

22 w/w?/nz.

Continuous observations began at the Goddard site in November,

approximately 10

1965, with the remaining stations in the network becoming
operational later in 1966. Jupiter measurements at the Goddard
station have been compiled for the period from November, 1965,
through February, 1966, and the results of that analysis follow.
421 measurements were made with the antennas set to the declination
cf Jupiter and held fixed on the local meridian. Hence, the
analysis was confined to periods between three hours before transit
to three hours after transit - the approximate half-power beam
width of the Yagi antennas. Further criteria required to identify
observed emission to be of Jovian origin were an identifiable
interferometer lobe pattern on the radiometer phase channel with
an amplitude of three times the rms system noise and freedom from
radio frequency interference. TUseful observations were obtained
on a total of 104 days at 16.7 MHz and 88 days at 22.2 MHz with

an average interference-free observing period of 5.3 hours per

day at 16.7 MHz and 1.9 hours per day at 22.2 MHz. Depending

upon the degree to which the above identification criteria were
met, events of Jupiter activity were classified as (1) '"possible",
(2) "probable', or (3) "definite'". Only activity in ID classes

2 and 3 was used in the analysis to be discussed below.

Data were reduced in the following manner. Each six-~hour
period centered on local meridian transit of Jupiter was divided
into 5-minute intervals. Each interval was inspected for occurrence
of interference and, if interference-free, for evidence of Jupiter
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Figure 3 - Section of record showing the passage of Cassiopeia A
through the interferometer pattern. The antennas were

set on the meridian at a declination approximately
40° south of the declination of the source.



§ N § I T I NP,
b l /2.2 MHz
‘ ! FRINGE AMPLITUDE
»q:x»OHK

MW W bt gAML ‘M‘Uﬂwﬂwﬂ il "" .WJ.A«‘AM o, Mw . -
. A, ) Mg A,

e fixic K . -
e A ‘ CONMNE PHASE .
I

j”ﬁanwﬂiaig*“wwwww AwWMﬁ/*v W' \wwmwwwMﬂwwmw S )

1200 .7 i . ;
‘ PN wE | (W00 U

RICMETER

" PSS O , oot
W'w?i WW . - Nk

Figure 4 - Sample rgcord showing Jupiter activity at both
frequenqles. Strong 16.7 MHz interference obscures
the Jupiter emission after local sunrise.




activity. Those noise events which could be classed as definite
or probable Jupiter activity were scaled to give the average and
peak antenna temperatures for each 5-minute interval. Further
information such as an estimate of the number of bursts and the
time character of the emission in each 5-minute interval was also
noted.

Appendix II of this report gives a catalog of the Goddard
Jupiter observations at both frequencies for the period November
11, 1965 through February 28, 1966. The observations also are
shown as a function of the System III (1957.0) central meridian
longitude of Jupiter and the departure of Jupiter‘'s satellite Io
from superior geocentric conjunction in Figure 5. The thin lines
show the relative positions of AIII and Io for all times when
useable observations of Jupiter could have been obtained, and the
heavy solid lines indicate the times when activity was observed
to occur. Notice that the thin lines are not evenly distributed
over the graph, indicating that certain combinations of \III and |
the position of io have been observed repeatedly whereas for other
combinations observations are inadequate or missing entirely.

This points up the need for continuous observations of Jupiter.
A statistically adequate series of measurements cannot be obtained
from a single site in a reasonably short period of time.

The more conventional histogram plots of occurrence probability
versus AIII and the position of Io are presented for cur data in
Figure 6. Occurrence probability is simply defined as the number
of 5-minute intervals for a given 5° longitude interval in which

Jupiter activity was observed divided by the number of 5-minute
intervals of good observing time for the same'%o longitude interval.
At 22.2 MHz the three )\ III "source'" regions are clearly discernible;
at 16.7 MHz the main and late sources (regions A and C) tend to
merge into a single bread region extending from )III 210° to

AIIT o 360°. The AIII histograms illustrate an interesting result



‘o

KEY: —— OBSERVED == ACTIVE

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

1

i

KEY: —— OBSERVED — ACTIVE
80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 ©

1 1 1 { 1 1 [ 1 1

0020 40 60

o] 40 3GNLIONOT

Figure 5 - Goddard Jupiter observations for the period November
11, 1965, to February 28, 1966, as a function of the
System III (1957.0) central meridian longitude of
Jupiter (AIII) and the departure of Jupiter's satellite
Io from superior geocentric conjunction (longitude of
Io). Periods when useful observations could be ob-
tained are indicated by the thin lines; periods when
Jupiter activity was detected are shown by the heavy
lines.
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regarding the radio rotation rate of Jupiter. If the System III
rotation period lengthed by approximately 1 second in 1961 as
reported by the Yale and Florida workers (Douglhs and Smith,
1963; Smith et al, 1965), then features on the histograms such
as the null region between the early and main sources or the peak
of the main source should advance in \III (1957.0) by about 10°
per year. On this basis, our 22.2 MHz data for the 1965 apparition
should show the main source peak to be near )III = 270°. The peak
occurs instead at AIII ~ 255°. The main source peak at 16.7 MHz
is similarly located the order of 10o below the pcosition predicted
cn the basis of a 1 second change in the rotation period. The
occurrence probability minimum between the early and main source
regions was located near AIII = 180° in 1961 and, on the basis of
a 10° shift per year, the minimum would be expected to fall near
220° in 1965. The Goddard station data in Figure 6 indicate
that this feature must occur below 2050. In other words, a change
in the rotation rate in the opposite direction to that reported
by the Yale and Florida workers must have occurred between 1963 and
1965. Dulk (1965a) has reached a similar conclusion from analysis
of HAO data. Gulkis and Carr (1966) have presented evidence that
the apparent rotation period drifts cyclically about a constant
mean period with a drift period of 11.9 years. Our results would
be qualitatively consistent with that hypothesis.

Although there are histogram peaks when Io is near 90° and
240° from superior geocentric conjunction, they do not dominate
as one might have expected from the results of other workers
(Dulk, 1965b; Lebo et al, 1965). At 22.2 MHz this discrepancy
may be attributable to the rather poor observing statistics and,
at 16.7 MHz, to the further fact that the Io control is not as
strong at the lower frequencies.

Figure 7 is a slightly different form of histogram in whic¢h
we have plotted the dependence of occurrence probability on the
System III longitude of Io. One can see at once that the
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probability of occurrence is a maximum when Io is near
190°<xIII<200°, the longitude of Jupiter's magnetic pole. In
other words, the probability of detecting emission is greatest
when Io is at the position in its orbit where its north magnetic
latitude is greatest. At both frequencies the occurrence
probability has a minimum nearly 180° away from the maximum

at \III ~ 20°.
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APPENDIX I

The data produced when all five stations are fully operational
will be sufficiently voluminous as to make completely manual
reduction procedures impractical. It will be desireable,
furthermore, to compare portions of the data with similar measure-
ments obtained from satellite experiments such as the Radio Astronomy
Explorer. For these reasons, a data recording system has been
designed which will place the data on a tape suitable for direct
computer processing. All stations are expected to have the new
data system by early 1967.

The three analog outputs of each radiometer system are first
fed to six integrating digital voltmeters where they are integrated
over a sampde period of either 3 or 10 sec. To determine the
sample period to be used, the instantaneous value of the '"cosine
phase'" output and "fringe amplitude" output of each radiometer
is compared with its average value of the previous five seconds
using a differential amplifier. If the respective difference
voltage is greater than a preset amount, the high speed rate is
initiated. Low speed sampling is initiated when the values do
not differ by more than the preset amount.

Four characters from each of the six integrating digital
voltmeters, ten characters from a time standard decoder and two
ID characters are formed into a data frame by a switching matrix.
Each 36 character frame is recorded on magnetic tape at the end
of each sample period. At the end of 32 frames, an interfile gap
is generated to maintain IBM compatibility.

Calibration of the unit is done each day by the station
operator. All integrating voltmeters are set to a known'preset
voltage, and the values placed on tape are read out for a "nixie"
display so the operator can make a quick check of the system
operation,



APPENDIX II

Jupiter observations at the Goddard Space Flight Center
station for the 1965 apparition are listed in the catalog to
follow. Data are presented in terms of U.T. days. The column
labeled '"Observing Period" lists the intervals during each day
when Jupiter was within three hours of meridian transit, when the
receiving equipment was known to be working\properly, and when
no interference signals were known to be present. The "Observing
Period', therefore, is the time when useful observations of
Jupiter could have been recorded if Jupiter had been active.

The column labeled "Jupiter Activity" lists the intervals during
each observing peri6éd when Jupiter activity was observed with

an intensity greater than ~3x10'22W/M2/Hz and which could be
classified as (2) probable or (3) certain. The column labeled
Tamax gives the average value of the maximum effective antenna
temperature at the input to the receiver during each five-minute
interval of activity. T, is in units of 103°k. To get the actual
antenna temperature, one must correct for cable losses (approximately
15 db at 16.7 MHz and 18 db at 22.2 MHz) and mismatch between

the antenna and receiver. Exceptions to the above definitions

are cited in the "Notes'" column.
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NOTES

Clearly identifiable Jupiter storm observed beyond the
nominal observing period cut-off of H.A., = + 3h.

Unusually intense, long duration storm.

Ta not scaled due to minor recorder problem.



